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Theoretical and Computational Aspects of Turbulence

AFOSR Project No 88-0103

Final Report, February 1990

Abstract

The computation of turbulent flows necessitate a better understanding of turbulence

and the development of algorithms and computational tools which are well adapted to the

handling of large numbers of data.

Turbulent flows are due to the superposition of a range of small and large eddies

which interact and the study of their interaction is an important part of understanding

turbulence. An inertial manifold is an exact (quasi-static) interaction law between small

and large eddies.

In relation with the concept of approximate inertial manifolds (AIM),

Foias-Manley-Temam have shown the existence of a simple finite--dimensional manifold

lying dose to the attractor. By projecting the Navier-Stokes equations on this manifold

we obtain a new numerical algorithm called the Nonlinear Galerkin Method. This

algorithm is well-adapted to the large time solution of the Navier-Stokes equations and

this has been broadly confirmed by the numerical tests which has been performed during

this contract. After further tests and studies, this algorithm will soon be available for

industrial implementations.
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For a turbulent flow, the permanent regime is mathematically represented by an

attractor that is a compact set in the phase space. Although this set may be highly

complicated (fractal), accurate numerical procedures for the solution of the Navier-Stokes

equations must produce approximate solutions that are as close as possible from the

attractor 4. We have to remember also that for turbulent flows, we have to solve the

Navier-Stokes equations on large intervals of time, since the flow remains time dependant

even if the forces are time independent.

An ideal solution would be to construct an Inertial Manifold for the Navier-SLokes

equations and to find approximate solutions that lie on this manifold. However the

existence of such a manifold is not yet proved and furthermore it is not clear if this is a

computationally feasible avenue.

The approach that we have initiated in this project consists in determining

manifolds that are sufficiently close from the attractor without strictly speaking containing

it; and to test numerical algorithms based on such manifolds. Such algorithms are called

Nonlinear Galerkin Methods.

The attractor A is a complicated set which may be fractal. It seems convenient to

approximate it by a smooth manifold which captures (contains) some of the details of the

fine structure of A but not all of them. We define an Approximate Inertial Manifold

(AIM) as a smooth manifold which attracts all orbits in a thin neighborhood; in particular

this neighborhood must contain .. For the Navier-Stokes equations

Foias-Manley-Temam have constructed such a manifold (see [FMT]) and its equation is

very simple. Other AIMs have been produced in [T2].

The usual Galerkin method for an evolution equation consists in projecting this

equation onto a finite dimensional manifold, namely that spanned by the functions of the

basis. A nonlinear Galerkin method consists in projecting the equations to be

approximated on a nonlinear manifold; of course we have in view to project the equation on

an approximate inertial manifold.
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During this project, the nonlinear Galerkin method based on the [FMT] manifold

has been numerically implemented and tested, in the case of 2D space periodic flows. A

predictor-corrector time discretization scheme was considered and the space discretization

was made by collocation-spectral (Fourier series) methods (B. Michaux, C. Rosier, R.

Temam). The preliminary numerical results were reported in [T3]. More important

numerical tests using the Cray-2 machine were also performed. They show that very

slight modifications of existing codes can yield a gain in CPU computing time of 30 to 50%.

Also the extension of these algorithms to finite elements, finite differences and wavelets

have been initiated [C], [P]. The preliminary results are extremely encouraging.

If we consider the Navier-Stokes equations written in functional form (i.e. by

projecting them on the space of divergence free vector functions, we find

aut + vAu + B(u,u) = f.

The operator A is essentially the Stokes operator associated to the corresponding

boundary values condition. It possesses a complete sequence of eigenvectors wj,

Aw. Ajwj,
0 < ,.< ;" <  A" -4j as j-4M

Now u = u(t) is decomposed in the Fourier basis corresponding to the eigenfunctions w

(1) u(t) = E u.(t)w.
j=1 J J

and we consider the splitting of the sum in (1) at some value m,
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m O

(2) Ym(t) E l uj(t)wj, zm(t) = uj(t)wj
j=1 j=m+1

u(t) = Ym(t) + Zm(t).

We can say that ym represents the large eddies and zm represents the small ones. The

manifold produced in [FMT] represents an approximate relation between small and large

eddies and is:

(3) vAzm(t) + QmB(ym(t),Ym(t)) = Qmf ,

where Qm is the projector on the space spanned by wm+1 . The construction of the

nonlinear Galerkin method based on the approximation (3) of the attractor is explained in

details in [T3].

We have also introduced another totally different method of approximating an

attractor; see [FT2].

Further work done by B. Michaux and J. Shen (post docs supported in part by this

grant) include [S] and [MRS1,2].

This two-year period has been also an initialization period for computing at the

Institute for Applied Mathematics and Scientific Computing. The SUNs and the Titan

machine acquired with funds from Indiana University and two NSF-SCREMS proposals

were delivered in April 1988 and in July 1989. Due to the lack of previous computational

environment at I.U. the role of the two post-doctoral researchers, partly supported by

AFOSR, (Michaux-Shen) during this initialization period was invaluable.

Although this may not be transparent from our reports and proposals, we are

convinced that the algorithms and the methodology presented here and initiated during this

contract will play a very important (if not central) role in scientific computing during the
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next decade. It is unfortunate that the agency did not decide to pursue its support and be

associated with the future developments. However we are extremely gratef il for the support

already provided.
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